Model Components
Polynomial Regression
The PolynomialRegression model fits a polynomial of a specified degree to the time series data.
TemporalMixtureModels.PolynomialRegression — MethodCreate a polynomial regression mixture model component of specified degree.
Arguments
degree::Int: Degree of the polynomial.
Example
Creating a polynomial regression model of degree 2:
model = PolynomialRegression(2)Ridge Regression
The Ridge model fits a polynomial regression with L2 regularization (ridge regression)
TemporalMixtureModels.RidgePolynomialRegression — MethodCreate a ridge (L2) polynomial regression mixture model component of specified degree and regularization parameter.
Arguments
degree::Int: Degree of the polynomial.lambda::T: Regularization parameter (L2 penalty).
Example
Creating a ridge polynomial regression model of degree 2 with lambda = 0.1:
model = RidgePolynomialRegression(2, 0.1)Lasso Regression
The Lasso model fits a polynomial regression with L1 regularization (lasso regression)
TemporalMixtureModels.LassoPolynomialRegression — MethodCreate a lasso (L1) polynomial regression mixture model component of specified degree and regularization parameter.
Arguments
degree::Int: Degree of the polynomial.lambda::T: Regularization parameter (L1 penalty).
Example
Creating a lasso polynomial regression model of degree 2 with lambda = 0.1:
model = LassoPolynomialRegression(2, 0.1)Custom Models
Custom model components can be implemented by subtyping the AbstractMixtureModelComponent and implementing the required methods. This allows for flexibility in defining new model types and behaviors tailored to specific use cases. See the tutorial on Implementing Custom Components for how to create your own model components.